skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chang, Hui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 23, 2026
  2. Abstract Light triggers an enhancement of global translation during photomorphogenesis in Arabidopsis, but little is known about the underlying mechanisms. The phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) at a conserved serine residue in the N-terminus has been shown as an important mechanism for the regulation of protein synthesis in mammalian and yeast cells. However, whether the phosphorylation of this residue in plant eIF2α plays a role in regulation of translation remains elusive. Here, we show that the quadruple mutant of SUPPRESSOR OF PHYA-105 family members (SPA1-SPA4) display repressed translation efficiency after light illumination. Moreover, SPA1 directly phosphorylates the eIF2α C-terminus under light conditions. The C-term-phosphorylated eIF2α promotes translation efficiency and photomorphogenesis, whereas the C-term-unphosphorylated eIF2α results in a decreased translation efficiency. We also demonstrate that the phosphorylated eIF2α enhances ternary complex assembly by promoting its affinity to eIF2β and eIF2γ. This study reveals a unique mechanism by which light promotes translation via SPA1-mediated phosphorylation of the C-terminus of eIF2α in plants. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. The yield strength of a CrCoNiSi0.3 medium-entropy alloy is significantly increased from 450 MPa (quasi-static, 0.001 s−1) to 1600 MPa (at a strain rate of 5000 s−1) under dynamic tension, with a considerable ductility of 60%. The high strain-rate sensitivity (SRS) of strength and work hardening is obtained, and the strength SRS reaches 0.408. The dominant deformation mechanisms are abundant multiple-twinning, increasing fractions of deformation twins and phase transformation from face-centered-cubic to hexagonal-close-packed (HCP) phases with a strain rate. A universal dislocation-hardened constitutive model considering the evolution of the twin and HCP transformation is established to predict the flow stress and microstructure evolution. 
    more » « less